
Python Programming
Part 1

Instructor: Vision Wang

Email: xinwang35314@gmail.com

• Numbers/Strings/Lists

• Control flow

• Input and Output

Part 1

Numbers: int, float, complex

• Int, or integer, is a whole number,
positive or negative, without
decimals, of unlimited length.

>>> 1
1
>>> 35656222554887711
35656222554887711
>>> z = -325522
>>> print(z)
-325522

• Float, or “floating point number”
is a number, positive or negative,
containing one or more decimals.
• Float can also be scientific
numbers with an “e” to indicate the
power of 10.

>>> 35e3
35000.0
>>> 12E4
120000.0
>>> z = -87.7e3
>>> print(z)
-87700.0

• Complex numbers are written with
a “j” as the imaginary part.

>>> 3+5j
(3+5j)
>>> x = 1-5j
>>> print(x)
(1-5j)
>>> -6j
(-0-6j)

Type Conversion

• You can convert from one type to another with the int(), float(), and
complex() methods.

>>> x = 1
>>> a = float(x)
>>> print(a)
1.0
>>> print(type(a))
<class 'float'>

>>> y = 2.8
>>> b = int(y)
>>> print(b)
2
>>> print(type(b))
<class 'int'>

>>> x = 1
>>> c = complex(x)
>>> print(c)
(1+0j)
>>> print(type(c))
<class 'complex'>

Python Operators

• Arithmetic operators are used with numeric values to perform
common mathematical operations.

Operator Name Example

+ Addition x + y

- Subtraction x – y

* Multiplication x * y

/ Division x / y

% Modulus x % y

** Exponentiation x ** y

// Floor division x // y

>>> 21%5
1
>>> 21//5
4

>>> tax = 12.5 / 100
>>> price = 100.50
>>> tax * price
12.5625
>>> round(_, 2)
12.56

Python Operators

• Comparison operators are used to compare two values.

Operator Name Example

== Equal x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

>>> 3==4
False
>>> 3>4
False
>>> 3!=4
True

String

• You can assign string to a variable.
• You can assign a multiline string to a variable by using three quotes.

>>> a = "Hello"
>>> a
'Hello‘

>>> b = """And me too!
Though I am more excited
than the others."""
>>> print(b)
And me too!
Though I am more excited
than the others.

Slicing

String Length

>>> b = "Hello, Jason!"
>>> print(b[1:4])
ell

>>> print(len(b))
13

Negative Indexing

>>> b = "Hello, Jason!"
>>> print(b[-5:-2])
aso

• You can return a range of
characters by using the slice syntax.

• Use negative indexes to start the
slice from the end of the string.

• To get the length of a string, use
the len() function.

• The strip() method removes whitespace
from the beginning or the end

>>> a = " Hello, Jason. "
>>> print(a.strip())
Hello, Jason.

• The lower() method returns the string in
lower case.
• The upper() method returns the string in
lower case.

>>> b = "Hello, Jason."
>>> print(b.lower())
hello, jason.
>>> print(b.upper())
HELLO, JASON.

String Methods

• The replace() method replaces a string
with another string.

>>> m = "Because"
>>> print(m.replace("e","J"))
BJcausJ

• The split() method splicts the string into
substrings if it find instances of the
separator.

>>> m = "My favorite fruit is apple,
banana, and orange."
>>> print(m.split(","))
['My favorite fruit is apple', ' banana', '
and orange.']

String Concatenation

>>> str1 = "Hello,"
>>> str2 = " Jason."
>>> print(str1+str2)
Hello, Jason.

String Formatting

>>> fruit = ", ".join(["Apple", "Banana",
"Pear"])
>>> print(fruit)
Apple, Banana, Pear

>>> day = 11
>>> month = "May"
>>> year = 2020
>>> text = "Today is {} {}, {}."
>>> print(text.format(month, day,
year))
Today is May 11, 2020.

>>> name = "John"
>>> age = 13
>>> print("%s is %d years old." %
(name, age))
John is 13 years old.

Lists
• Lists can be heterogeneous.
• Lists can be indexed and sliced.
• Lists can be manipulated.
• Return length using len() method.

>>> a = ["spam", "eggs", 100, 23, 2*3]
>>> a[-1]
6
>>> a[1]
'eggs'
>>> a[2] = a[2] +10
>>> print(a)
['spam', 'eggs', 110, 23, 6]
>>> print(a[0:3])
['spam', 'eggs', 110]
>>> print(len(a))
5

• Lists can be joined together.

>>> list1 = ["e","m","n"]
>>> list2 = [32,56,13]
>>> list3 = list1+list2
>>> print(list3)
['e', 'm', 'n', 32, 56, 13]
>>> list1.extend(list2)
>>> print(list1)
['e', 'm', 'n', 32, 56, 13]

Lists Methods

Method Description

append() Adds an element at the end of the list

clear() Removes all the elements from the list

copy() Returns a copy of the list

count() Returns the number of elements with the specified value

extend() Add the elements of a list (or any iterable), to the end of the current list

index() Returns the index of the first element with the specified value

insert() Adds an element at the specified position

pop() Removes the element at the specified position

remove() Removes the first item with the specified value

reverse() Reverses the order of the list

sort() Sorts the list

https://www.w3schools.com/python/ref_list_append.asp
https://www.w3schools.com/python/ref_list_clear.asp
https://www.w3schools.com/python/ref_list_copy.asp
https://www.w3schools.com/python/ref_list_count.asp
https://www.w3schools.com/python/ref_list_extend.asp
https://www.w3schools.com/python/ref_list_index.asp
https://www.w3schools.com/python/ref_list_insert.asp
https://www.w3schools.com/python/ref_list_pop.asp
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_list_reverse.asp
https://www.w3schools.com/python/ref_list_sort.asp

Control Flow:

x = 30
if x<= 15:

y = x+15
elif x>=30:

y = x+30
else:

y = x
print("y = ", y)

>>> y= 60

if statement

for loops

>>> for x in [1,7,13,2]:
print(x)

>>>
1
7
13
2

• The for loop is used to iterate over a sequence (list, tuple, string) .

>>> genre = ['pop','rock','jazz']
>>> for i in range(len(genre)):

print("I like ", genre[i])

>>>
I like pop
I like rock
I like jazz

>>> for x in range(5):
print(x)

>>>
0
1
2
3
4

range(n) generates a list of
numbers *0,1,…,n-1]

while loops

• The while loop is used to iterate over a block of code as long as the test
expression is true.
• Compared to for loop, we usually use while loop when we don’t know
the number of the times to iterate beforehand.

>>> x = 1
>>> while x<10:

print(x)
x = x+1

>>>
1
2
3
4
5
6
7
8
9

Loop Control Statements

• break – Jumps out of the closest enclosing loop.
• continue – Jumps to the top of the closest enclosing loop.
• pass – Does nothing, empty statement placeholder.

>>> for item in "string":
if item =="i":

break
print(item)

>>>
s
t
r

>>> for item in "string":
if item =="i":

continue
print(item)

>>>
s
t
r
n
g

Input

• Input using input() function

num = int(input("give me a
number:"))
print(num)
print(type(num))

give me a number:3
3
<class 'int'>

• Input using open() function to
open a file

File_object = open(“File_Name”,
“Access_Mode”)

file1 = open(“test1.txt”, “r+”)
print(file1.readlines())

['eryiop']

Output

• We can use format() function to adjust output format.

Expressing a percentage:

>>> points = 20
>>> total = 22
>>> print("Correct answers:
{:.2%}".format(points/total))

Correct answers: 90.91%

